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Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems
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Stationary spatially inhomogeneous patterns which appear due to the interaction of reaction and convection
in a packed-bed cross-flow reactor are observed and analyzed. A linear stability analysis was performed for the
case of unbounded system, and an analytical expression for the amplification threshold was determined. Above
this threshold stationary patterns could be sustained in bounded systems. A weakly nonlinear analysis is used
in order to derive the governing amplitude equation. The results of linear and nonlinear analyses were verified
by direct numerical simulations.

PACS number~s!: 82.40.Ck, 47.54.1r
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I. INTRODUCTION

In this work we describe the emergence of stationary p
terns due to interaction of convection, conduction~or diffu-
sion!, and reaction in a realistic model of a catalytic me
brane reactor. Aside from describing the phenomena we
to derive a general complex Ginzburg-Landau~CGL!-like
model. While such models that account for both diffusi
and convection have been studied by several groups,
highlight the importance of boundary conditions for patte
selection, and point to the problem of translating real bou
ary conditions to those of the CGL model. It was demo
strated in several studies that pattern selection in a boun
region is significantly affected by the boundary condition
Deissler@1# was probably the first to point out the importa
role of boundary conditions, but he was interested mainly
the effect of boundaries as a source through which dis
bances are injected into the flow and propagate downstre
In subsequent works@2–4# the effect of various types o
boundary conditions including reflective and absorb
boundaries was investigated using the CGL equation. It
established that close to threshold the dynamics of a boun
system is reasonably well described by the amplitude eq
tion derived for the infinite system@5#.

Spatiotemporal patterns in reaction-diffusion syste
have been studied extensively, and typically emerge du
the interaction of a short-range activator with a highly d
fusing inhibitor. Oscillations in high- and low-pressure ca
lytic systems are accounted for by a fast activator and a s
but localized~nondiffusing! inhibitor. Typically, the fast set
in catalytic reactors accounts for reactant concentration
the catalyst temperature, while the slow inhibitor is the ca
lytic activity, as described above. The identity and the kin
ics of the latter are still debated. Patterns in such syst
may emerge due to long-range interaction imposed by glo
control or by gas-phase mixing and were recently studied
our group as well as other groups~see the review by Shein
tuch and Schvartsman@6#!. When the activity is fixed the
system decays into a steady state due to the large heat c
ity of the catalyst. The model considered here assume
fixed activity, and patterns emerge due to the interaction
convection and reaction.

Commercial catalytic reactors are typically organized
PRE 611063-651X/2000/61~3!/2436~9!/$15.00
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packed beds with the flow of the reactants and produ
through the bed of catalytic pellets. Pattern formation
convection-conduction-reaction systems with a simple e
thermic and activated catalytic reaction has recently attrac
considerable attention. Convection will affect the emerg
patterns in oscillatory systems, as demonstrated in re
studies @7#. A reactor with flow reversal was extensive
studied and installed commercially@8#. Patterns due to fron
feedback in a loop reactor were recently demonstrated
Gilles and co-workers in Refs.@9,10#.

We consider a membrane~or cross-flow! reactor with re-
alistic parameters@high heat capacity and small axial dispe
sion ~diffusion!#: physically it requires a continuous supp
of reactants along the bed, so that a homogeneous~space-
independent! solution may be attained. A similar model wa
used in recent works by Yakhnin and co-workers@11–13#
devoted to differential flow induced chemical instability in
one-dimensional tubular cross-flow reactor. Linear stabi
analysis around a spatially homogeneous solution was u
to obtain the dispersion relation, and some useful estimat
of the possible wave numbers were obtained. The patte
excited above the convective instability threshold are was
out in bounded system, so the authors used temporal for
at the reactor inlet in order to excite nonvanishing inhom
geneous structures. It should be underlined that these
terns are periodic in time, and characterized by a nonz
amplitude growth rate.

In the model discussed below we consider two types
boundary conditions—periodic, and realistic Danckwer
type. For the former type we found well known travellin
wave solutions described by a complex Ginzburg-Land
equation. For the latter the homogeneous state typically d
not satisfy the boundary conditions, and the emerging in
mogeneous structure is not the result of the bifurcation
can be viewed as the system response to the boundary
ditions.

The structure of this work is as follows. The react
model in both dimensional and dimensionless forms is int
duced in Sec. II. In Sec. III a neutral curve for an unbound
system with a minimum corresponding to an oscillato
~Hopf! bifurcation is obtained by means of linear analys
This minimum represents the convective instability thre
old. Periodic boundary conditions may lead to a shift of t
2436 ©2000 The American Physical Society
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PRE 61 2437NONLINEAR ANALYSIS OF STATIONARY PATTERNS . . .
critical wave number, but the type of bifurcation is pr
served. It is shown that the phase velocity is not const
along the neutral curve; moreover, it may change its sign
some point on the curve. This point corresponds to the a
plification threshold, so that it appears to be very import
for further analysis of the system. In a semi-infinite region
a finite region, traveling waves decay if the instability
convective. Danckwert’s boundary conditions produce a c
tain stationary regime instead of traveling waves. Its prop
ties are essentially different below and above the amplifi
tion threshold. Only after the amplification threshold
passed does one obtain new patterns.

The nonlinear analysis is performed in Sec. IV and t
governing equation for a perturbation amplitude is deriv
For periodic boundary conditions the result is quite stand
@it leads to the complex Ginzburg-Landau equation~CGLE!#,
and it is not presented. In the vicinity of the amplificatio
threshold, in contrast to the standard CGLE, the govern
amplitude equation lacks the diffusional term, while the co
vective term is present, and the latter have a complex~veloc-
ity! coefficient. The cases where this equation is well po
are found and discussed.

The stability analysis results are checked against dir
numerical simulations presented in Sec. V. They confirm
excitation of traveling waves in a system with period
boundary conditions, and the decay of these solutions
realistic boundary conditions below the amplification thres
old. Numerics also show that above this threshold station
structures emerge, these patterns remain stable even far
threshold, while the profile changes significantly. Note th
the developed theory is valid if the critical wavelength
significantly smaller than the size of the system.

II. REACTOR MODEL

Consider the main physical phenomena that take plac
a one-dimensional membrane~or cross-flow! reactor in
which a first-order exothermic reaction occurs. By me
brane reactors we imply a fixed bed, in which the reacta
flow and react, while a small stream of highly concentra
reactants is supplied continuously~by diffusion or flow!
through the reactor wall. Dispersion of a reactant along
packed-bed reactor, rather than supplying it with the fe
may be advantageous in several classes of reactions~see the
discussion in Ref.@14#!. A continuous supply of a reactan
may also be effectively achieved in a sequence of two c
secutive reactions, when the first one is reacts at an alm
constant rate. The mathematical model accounts for the
and localized concentrationC and the slow and conducting
temperatureT, which can also be viewed as the activato
The mass and energy balances are conventional ones e
for the mass supply term; they account for accumulati
convection, axial dispersion, chemical reactionr (C,T), heat
loss due to cooling@ST5aT(T2Tw)#, and mass supply
through a membrane wall@SC5aC(C2Cw)#. For the one-
dimensional case the appropriate system of equations ha
following forms:

]C

]t
1u

]C

]z
2eD f

]2C

]z2
52~12e!r ~C,T!1SC ,

~1!
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~rcp!e

]T

]t
1~rcp! fu

]T

]z
2ke

]2T

]z2

5~2DH !~12e!r ~C,T!1ST .

Danckwert’s boundary conditions are typically imposed
the model:

z50, eD f

]C

]z
5u~C2Cin!, ke

]T

]z
5~rcp! fu~T2Tin!;

~2!

z5L,
]T

]z
5

]C

]z
50.

Mass dispersion is typically negligible. A first-order ac
vated kineticsr 5Aexp(2E/RT)C is assumed. The appropr
ate mathematical model may be written in the dimensionl
form of Eqs.~1! and ~2! ~see Ref.@7# for a derivation!:

]x

]t
1

]x

]j
5~12x!G~y!2~x2xw!5 f ~x,y!,

Le
]y

]t
1

]y

]j
2

1

Pe

]2y

]j2
5B~12x!G~y!2a~y2yw!5g~x,y!,

~3!

G~y!5Da expS gy

g1yD .

First Eqs.~3! will be treated in an unbounded region. A
though this solution can hardly be realized, technically
provides some insight into the bounded system case. L
we supply it with Danckwert’s boundary conditions

j50, x5xin ,
]y

]j
5Pe~y2yin!, j5jex ,

]y

]j
50.

~4!

Here the dependent variables are normalized in a stan
way, but independent variables and nondimensional par
eters~Da, Pe! are normalized with respect to the mass tra
fer coefficientac :

x5
Cin2C

Cin
, y5g

T2Tin

Tin
, j5

aCz

L
, t5

aCtu

L
,

g5
E

RTin
, B5g

~2DH !Cin

~rcp! fTin
, Le5

~12e!~rcp!s

~rcp! f
,

~5!

Pe5
~rcp! fLu

keaC
, Da5

AL

uaC
e2g,

aC5
kgPL

u
, a5

hTPL

~rcp! fuaC
.

In order to reduce the number of free parameters we u
Tw5Tin , i.e., yin5yw50; note thatxw,0 corresponds to
the caseCw.Cin . The length of the reactorjex was chosen
to resolve the structure of emerging patterns.
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III. LINEAR ANALYSIS

System~3! in an unbounded region may admit multip
homogeneous solutionsxs andys of the corresponding alge
braic systemf (x,y)5g(x,y)50. The rootsxs and ys are
linearly dependent, and theys values may be determine
from the equation

H~ys!G~ys!5a~ys2yw!, ~6!

where

H~ys!5B~12xw!2a~ys2yw!.

The left hand side of Eq.~6! is a ‘‘sigmoidal curve,’’ and up
to three intersections with the straight line@the right hand
side of Eq.~6!# may exist. The multiplicity of the homoge
neous solutions as well as the dynamic behavior of the
lated system

]x

]t
5 f ~x,y!,

]y

]t
5g~x,y! ~7!

was extensively investigated in Refs.@15,16#, as it describes
the temporal dynamics of a continuously stirred tank reac
~CSTR!. This problem can exhibit a plethora of phase pla
regimes, including a simple limit cycle, a pair of stable a
unstable limit cycles around a stable state, the coexistenc
a limit cycle with a low-conversion stable state, and a lim
cycle surrounding three unstable states. We expect tha
spatiotemporal behavior of the distributed system~3! is re-
lated to the corresponding CSTR problem. Obviously, in
limit of large Peclet numbers Pe→`, the steady state solu
tions of Eq. ~3!, if they exist, are fully equivalent to the
temporal solution of Eq.~7! ~with j instead oft). However,
a comprehensive investigation of the behavior of system~3!
is beyond the limits of this study. We shall consider a p
ticular case when system~3! admits three homogeneous s
lutions; the results presented below are obtained only for
upper one. Other situations are considered elsewhere@17#.

The stability of the solution (xs ,ys) can be determined by
means of a linear stability analysis. Denoting deviations fr
the basic solution as (x1 ,y1), and linearizing the origina
problem, we arrive at the following system for the distu
bances:

]x1

]t
52

]x1

]j
2„11G~ys!…x11G8~ys!

H~ys!

B
y1 ,

~8!
]y1

]t
52Le21

]y1

]j
1

1

Le Pe

]2y1

]j2

2
B

Le
G~ys!x11G8~ys!

H~ys!

Le
y12

a

Le
y1 .

Assuming disturbances to be harmonic in the space v
able j, i.e., (x1 ,y1);eikj1st, where k is the disturbance
wave number ands is its growth rate, and using it in Eq.~9!,
we arrive at the dispersion relationD(s,k)50. This has
form of a quadratic equation withcomplexcoefficients,

s21~Ar1 iAi !s1~Nr1 iNi !50, ~9!
e-

r
e

of
t
he

e

-

e

ri-

where the coefficients are determined by the following f
mulas:

Ar511G~ys!1
k21a Pe

Le Pe
2G8~ys!

H~ys!

Le
, Ai5k

11Le

Le
,

Nr52G8~ys!
H~ys!

Le
1k2

11G~ys!2Pe

Le Pe
1

a„11G~ys!…

Le
,

~10!

Ni52kG8~ys!
H~ys!

Le
1k

11a1G~ys!

Le
1

k3

Le Pe
.

It can be easily shown that the bifurcation condition Res
50 is satisfied if

Ar
2Nr1ArAiNi5Ni

2 , ~11!

while the frequency of the emerging oscillatory pattern
given by

vc5Im s52Ni /Ar . ~12!

The latter should be calculated at the point correspondin
the minimum of the neutral curve determined by relati
~11!. This curve can be found numerically, and typically a
quires the form shown in Fig. 1~the chosen bifurcation pa
rameter is Pe!.

The minimum of the curve (kc ,Pec) corresponds, in an
unbounded system, to the excitation of moving waves.
bounded system with periodic boundary conditions the cr
cal wave number value may be shifted. On the other ha
this minimum coincides with the threshold of the convecti
instability; hence any spatial nonuniformities are advected
the direction determined by the sign of the phase veloc
(dv/dk)c , and in the finite region these disturbances c
survive only for periodic boundary conditions. In a fini
region with realistic boundary conditions these perturbatio
would inevitably decay.

Because our main goal is to study the influence of stati
ary nonhomogeneous boundary conditions, we will also
vestigate the transition between nontransparency and am

FIG. 1. The neutral curve determined by relation~11! calculated
with B530, g520, a520, xw5211, yw50, and Le5333; the
value of Da corresponds to the upper branch of the basic solu
ys517.54. The dot on the curve corresponds to the amplifica
threshold.
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fication for stationary boundary disturbances@18#. We have
shown that this transition is connected with a point on
neutral curve corresponding to the zero wave velocity. T
location of this point is determined by Eq.~11! supplemented
by a condition of zero frequencyNi50 shown by the line
Ims50. This additional condition determines a point at t
neutral curve which is shown in Fig. 1; its location is dete
mined as follows:

k05@G~ys!G8~ys!H~ys!2„11G~ys!…
2#1/2,

~13!

Pe052
k0

2

11a1G~ys!2G8~ys!H~ys!
.

At this point the imaginary part of some complex rootk of
the dispersion relationD(s,k)50 tends to zero ats→0.
The value Pe5Pe0 corresponds to the transition from no
transparency to amplification regime~see Ref.@18#!.

IV. NONLINEAR ANALYSIS

In order to investigate the spatial decay~in the nontrans-
parency region! and the nonlinear spatial growth~in the am-
plification region! of a stationary boundary disturbance ne
the point Pe5Pe0, we will develop an appropriate amplitud
equation which is valid near that point and describes just
amplified and weakly decaying disturbances, i.e., dis
bances withk neark0.

A. Derivation of the amplitude equation

The nonlinear analysis is made by means of the multisc
expansion approach@19#. In this section we sketch majo
steps of derivation of amplitude equation for the unbound
system under investigation.

We introduce a hierarchy of time scales,

]/]t5]/]t01e]/]t11e2]/]t21•••, ~14!

and expand in Taylor series the phase variables and the
furcation parameter,

u5u01eu11e2u21•••, Pe5Pe01ePe11e2Pe21•••,
~15!

whereu5$x,y%. We also determine two spatial scales:

]/]j5]/]j01eb]/]j1 ; ~16!

here the value ofb should be chosen to balance terms
different orders ofe properly.

In the case of the Hopf bifurcation with the critical poi
located at the minimum of the neutral curve, the spatial s
ing b is half that of the bifurcation parameter deviatio
~which usually is set equal to 2, i.e., Pe150). The derivation
of the amplitude equation in this case is quite standard,
sulting in the CGLE. The solution of this equation dete
mines an amplitude of the traveling waves excited above
bifurcation threshold. Numerical simulations shows that t
equation describes the emerging nonstationary patterns
well ~see Sec. V!. In the case with Ims50 the point
(k0 ,Pe0) is usually located at the linear section of the neut
e
e

-

r

e
r-

le

d

bi-

f

l-

e-
-
e

s
ite

l

curve, and the bifurcation parameter deviation should be
the same order of magnitude as the spatial scalingb, so b
52.

Substituting the above expansions into the original se
equations, and collecting terms of the same orders ofe we
produce a set of equations. It can be easily seen that in ze
order in e, we arrive at a steady state problem determin
stationary homogeneous solution$xs ,ys%. In first order~with
Pe150) we reproduce the homogeneous linear problem~8!
in the form

Lu15„2]/]t01D~Pe0!]2/]j0
21V]/]j01J…u150.

~17!

HereD andV are diffusional and convectional matrices:

D~Pe!5S 0 0

0 ~Le Pe!21D , V5S 21 0

0 2Le21D .

The matrixJ can be found as a Jacobian matrixFu of the
reaction part of the problemF(u)5$ f (u),g(u)/Le% calcu-
lated at the stationary pointu0:

J5S 212G~ys! G8~ys!H~ys!/B

2B G~ys!/Le „G8~ys!H~ys!2a…/LeD .

The nontrivial solution of the linear problem~17! can be
written in the case Ims50 as

u15a~j1 ,t1 ,t2 , . . . !Ueik0j01c.c.,

whereU is the eigenvector corresponding to zero eigenval
and a is a complex amplitude of the perturbation, whic
remains undetermined at this stage. The eigenvector is fo
as

U5$G8~ys!H~ys!/B,11G~ys!1 ik0%.

In the next order we arrive at the following inhomogeneo
problem:

Lu25]u1 /]t12 1
2 Fuuu1u1 . ~18!

HereFuu is a tensor of the third rank, with components

~Fuu! i jk5
]2Fi

]uj]uk

and L is defined in Eq.~17!. The solvability condition for
Eq. ~18! is determined by the orthogonality of a secular p
of the inhomogeneity to an eigenvectorU† of the adjoint
linear problem. This vector is given by

U†5l21$2B„11G~ys!2 ik0…/„G8~ys!H~ys!Le…,1%,

which satisfies the additional orthogonality conditio
(U†,U)51 @(.,.) denotes a scalar product defined as Ca
sian scalar product#. Herel5@„11G(ys)…(Le21)1 ik0(Le
11)#/Le is the nonzero eigenvalue of the linear problem
can be easily checked that the solvability condition is equi
lent to

]a/]t150.
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The last equation again says nothing about the amplit
behavior in time and space, so we need to proceed to the
order, and to determine part ofu2 orthogonal tou1. It has
two contributions

u25u2
(2)1u2

(0) ,

one is proportional to the double spatial frequency mo
u2

(2) , and the second corresponds to the constant modeu2
(0) .

These contributions are given by

u2
(0)52Fu

21FuuUU* uau2,
~19!

u2
(2)52

1

2
„Fu24k0

2D~Pe0!12ik0V…

21FuuUUa2,

where* denotes complex conjugation. In the third order ine
we obtain the following equation

Lu35
]u1

]t2
2D8~Pe!

]2u1

]j0
2

Pe22S 2D
]

]j0
2VD ]u1

]j1

2
1

6
Fuuuu1u1u12Fuuu1u2 . ~20!

After substitution of Eqs.~19!, and projecting on the leadin
harmonics, we finally arrive at the nontrivial amplitude equ
tion

]a

]t2
52c3uau2a1c1a1v

]a

]j1
. ~21!

Here the most important cubic term~Landau! coefficient

c351/2~U†,2FuuuUUU* 1FuuU*

3„Fu24k0
2D~Pe0!12ik0V…

21FuuUU

12FuuUFu
21FuuUU* !. ~22!

The positive real part of this coefficient corresponds to sta
stationary homogeneous amplitude of the Turing-like per
bation. The explicit expression forc3 is cumbersome, and i
omitted here. The linear term coefficient is proportional
the second-order deviation of the bifurcation parameter:

c152k0
2
„U†,D8~Pe0!U…Pe2.

Finally, the convective term coefficient is cast in the form

v5„U†,~2ik0D1V!U….

Substitution of model values forD, V, U, andU† produces
the following expressions for the above coefficients:

c15
k0

2Le

Pe0
2l

„11G~ys!1 ik0…Pe2,

~23!

v52
2Le

k0
2l

F k0
4

Pe0
1 ik0@a„11G~ys!…2G8~ys!H~ys!#G .
e
ext

e

-

le
r-

The parameter Da can be tuned in order to shift the c
cal point to the minimum of the neutral curve shown in F
1. The derivation of the amplitude equation in that case is
changed, but the imaginary part ofv corresponding to the
rate of the perturbation growth Res vanishes for obvious
reasons.

B. Analysis of the amplitude equation

The complex amplitude equation derived in Sec. IV A
valid in an unbounded system, or in a finite length regi
which is much larger than the length of the critical distu
bance. As we show below it can qualitatively describe
behavior of the perturbation amplitude even in a gene
bounded system with imperfect boundary conditions.

It should be emphasized that the Eq.~21! is actually ill
posed; i.e., infinitesimally small perturbations of a soluti
will grow very fast, so that the original approximation is n
longer justified. This feature of Eq.~21! is caused by the fac
that in the framework of this equation the linear growth ra
Res(k) is approximated by the linear function ofk near the
point k5k0. Thus it strongly overestimates the growth ra
of the disturbances withk,k0, if uk2k0u is not small, and
leads to a spurious instability of any solutions in an infin
region. Nevertheless, Eq.~21! can be useful in describing
solutions which do not contain disturbances with largeuk
2k0u, e.g.,~i! in cases where the spatial modulation of t
amplitude is neglected, and thus the wave number p
scribed; or~ii ! for the calculation of the spatially modulate
steady stateregime where the short-wave modulations whi
grow fast are excluded from consideration.

It is reasonable to use the polar representation of the c
plex amplitudea5reif, and we arrive at a pair of real equa
tions:

]r /]t252c3r r
31c1r r 1v r]r /]j12v i r ]f/]j1 ,

~24!
]f/]t252c3i r

21c1i1~v i /r !]r /]j11v r]f/]j1 .

Here the subscriptsr and i of the coefficients correspond t
the real and imaginary parts of the corresponding quantit

1. Spatially homogeneous amplitude regime

In this regime (]r /]j15]f/]j150), the equations for
the real amplituder and the phasef are separated. The
former equation has a nontrivial stable solution

r s5Ac1r

c3r
, ~25!

which is proportional to square root of the parameter’s
viation. The solution of the phase equation

fs5
c3rc1i2c3ic1r

c3r
t25Vt2 ~26!

leads to a frequency shiftV proportional to the parametric
deviation. This implies that the perturbation has the form
a traveling wave with a velocity

V5V/k0 . ~27!
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FIG. 2. Snapshots of the temperature profil
for a system with periodic boundary condition
for parameters as in Fig. 1 andys517.677, with
varying Pe.Pe0598.2:~a! 102,~b! 110,~c! 200,
and ~d! 1000. The horizontal lines show th
steady state level.
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Note that in the case of the infinite region we consider h
the nonlinear solution is nonstationary~Hopf bifurcation!,
though the linear theory predicts a zero frequency at
point k5k0.

2. Spatially modulated stationary regime

Though the amplitude equation~24! is derived for the
case of an infinite system or a system with periodic bound
conditions, we are going to check its applicability for th
problem in a finite region with realistic boundary conditio
~4!. The achievement of this goal is simplified by the obs
vation that the simulated patterns are stationary~see Sec. V!.
Let us consider the stationary problem in the semi-infin
regions (]r /]t250,]f/]t250):

dr/dj15r ~2 c̃3r r
21 c̃1r !, df/dj15~2 c̃3i r

21 c̃1i !
~28!

( c̃352c3 /v, c̃152c1 /v), subjected to nonhomogeneou
inlet conditions

r ~0!5r 0 , f~0!5f0 . ~29!

The solutions of this system are given by

r ~j1!5
Ac̃1r r 0exp~ c̃1rj1!

Ac̃1r2 c̃3r r 0
2
„12exp~2c̃1rj1!…

,

~30!

f~j1!5f01 c̃1ij11
c̃3i

2c̃3r

ln
c̃1r

c̃1r2 c̃3r r 0
2
„12exp~2c̃1rj1!…

.

Note that,c̃1r determines the spatial increment of the amp
tude, whilec̃1i gives the wave-number shift. Unfortunatel
there is no recipe of converting the original inlet bounda
condition ~4! into the inlet valuesr 0 ,f0 in Eq. ~29! for the
amplitude equation~28!. We can only fit these values int
solution ~30! for better agreement with the numerical sim
lation results. In Sec. V we show that solution~30! of the
model system of equations~28! and~29! describes the result
of numerical simulations rather well.
e

e

ry

-

e

-

Note that the behavior of solution~30! is essentially
changed when we cross the amplification thresholdc̃1r50:
negative values ofc̃1r correspond to the nontransparency r
gion, and the positive values to the amplification region
should be emphasized that the transition described abovis
not the Turing bifurcation. As it was shown in Sec. IV B 1
in the absence of a stationary boundary disturbance the s
ture excited withk5k0 has a zero frequency only in the lim
Pe→Pe0, but a nonzero frequency as Pe.Pe0, so that there
is a specific case of Hopf bifurcation. Note also that th
transition does not correspond to the absolute instab
threshold; the latter leads to traveling wave regimes~see, for
example, Ref.@20#!.

V. NUMERICAL SIMULATIONS

Numerical simulations were conducted around the po
of the amplification threshold (Pe0 ,k0) for two different
cases. In the first one we choose a set of parameters
which this point coincides with the point of convective in
stability (Pec ,kc), and thus the results of the stability anal
sis for an unbounded system may by directly applied for
case of a bounded system with periodic boundary conditio
In the following stage we consider the general case when
points of the convective and amplification thresholds
separated, and discuss the emerging patterns and the va
of the analytical predictions derived for an unbounded s

FIG. 3. Comparison of the analytical and numerical depend
cies of the perturbation concentration amplitudeax ~a! and the
phase wave velocityv ~b! on the deviation of the bifurcation pa
rameterDPe. Parameters as in Fig. 1, andys517.677.
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tem to a bounded system subject to realistic boundary c
ditions.

Case 1.The point of amplification threshold is located
the minimum of the neutral curve~for the parameters used i
Fig. 1 with ys517.677; the corresponding critical values a
Pec5Pe0598.2 andkc5k0548.47). For a system with pe
riodic boundary conditions the length of the reactor was c
sen to be equal toL510(2p/k0). Note that the fixed value
of L automatically ensures the constant value ofk0, while in
the unbounded system this parameter may be affected b
bifurcation parameter. As expected, only the homogene
solution emerges for Pe,Pec5Pe0. For Pe.Pec the system
exhibits traveling wave solutions with constant amplitud
~Fig. 2!. With increasing Pe the form of the profiles chang
but the wave number is preserved.

The comparison of numerical and analytical results de
onstrates that the value of Pec is predicted with a very high
accuracy by the linear stability analysis. The concentrat
amplitudeax and the velocity of the waves,V, plotted in Fig.
3 as functions of deviations in Pe, can be predicted quite w
by nonlinear analysis@Eqs.~25! and~27!# for relatively small
DPe,5 ~the same is valid for the temperature amplitudeay).
For largeDPe the linearity of the amplitude curves withAPe
breaks, and the numerical values exceed the theoretica
sults. The Fourier analysis of the profiles reveals that incre
ing Pe leads to an excitation of higher harmonics withk
52k0 , k53k0 , etc. The impact of these harmonics i
creases with the Pe number, and leads to a perturbation o
original profile with a single wave number.@It is interesting

FIG. 4. Comparison of the analytical and numerical dep
dences of the perturbation concentration amplitudeax for the
boundary condition at the inlet with deviationdu;U; Pe5100.
Parameters as in Fig. 1, andys517.677.
n-

-

he
us

s
s

-

n

ll

re-
s-

the

to note that the ratio of the amplitudesax /ay , as well as the
velocity of the wavesV, are in a good agreement with an
lytical predictions in a relatively large region (DPe,10),
i.e., the formulas for the eigenvectors may be applied i
wider range of deviation of the bifurcation parameter.#

To elucidate the role of the boundary conditions on t
amplitude of the patterns in a bounded systems, we sim
fied the boundary conditions, using fixed values of the va
ables at the boundariesuuj505us1du instead of Eq.~4!. For
deviationsdu;U, dependences~30! are in a good agreemen
with numerical results. In the case of arbitrary deviations
phase shiftDk is predicted quite well, but the amplitud
behavior can be described only qualitatively~Fig. 4!.

Case 2. In the second stage we carried out numeri
simulations for Eqs.~3! and ~4!, for the general case where
in the corresponding unbounded system, the points of am
fication threshold and convective instability do not coincid
It should be emphasized that the stability analysis prese
above cannot be applied directly for a bounded system~an
imperfect bifurcation is expected which is not analyzed
the present investigation!. So we study pattern formation b
numerical experiments, and test the predictions of the a
lytical results in the general case.

Typical solutions in a bounded domain~Fig. 5! show that
for Pe,Pec the homogeneous solution (xs ,ys) is established
in most of the domain with some adjustment to the bound
conditions near the inlet section. Note that the critical para
eters cannot be determined exactly, but the numerically
termined threshold values of Pe for the convective instabi
and amplification threshold are very closed to the analyt
values.

For Pe.Pec the system exhibits transients of travelin
waves: once excited, they move until they are conseque
arrested near the boundaries, and finally stationary patt
are formed~the dynamic behavior for Pe.Pe0 is illustrated
by Fig. 6, but a similar transition takes place for Pe.Pec ;
see the discussion below!. The form of the sustained station
ary patterns depends on Pe. In the subcritical region
,Pe0), the amplitude of the wavy patterns decays along
reactor, and the profilesy(z) andx(z) tend to the stationary
solutionsys andxs , similar to the case when Pe,Pec .

For the supercritical conditions (Pe.Pe0) stationary pat-

-

s-
f

FIG. 5. Steady state profiles in a bounded sy
tem with Danckwert’s boundary conditions o
concentrationx @~a! and ~f!, corresponding to~b!
and ~e!#, and of temperaturey@(b) – (e)# for the
parameters used in Fig. 1 with varying Pe@(b)Pe
540,Pec , ~c! Pe560.Pe0, ~d! Pe5100, and
~e! Pe5104#. The horizontal lines show the
steady state level.
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terns are established with an amplitude that varies in sp
but tends to some saturated value, as follows from the a
lytical investigation. To the best of our knowledge, such p
terns in reaction-convection-diffusion systems were not
tected previously. In Ref.@20# moving patterns of similar
profiles were detected above the absolute instability thre
old in the framework of the complex Ginzburg-Landau equ
tion.

For relatively small deviationsDPe5Pe2Pe0, the pat-
terns have a harmonic form@Fig. 5~c!#. With increasingDPe,
the amplitude of the state variables increases. This proce
accomplished by a transformation of the form of the patte
~similar to case 1!, and a decrease of the wave number@see
Figs. 5~d! and 5~e!#. Numerical simulations reveal that th
form of the patterns becomes insensitive to Pe number
large Pe (.104).

The computed wave number is in a very good agreem
with the theoretical valuek0 even for large deviations of P
from the critical value Pe0, i.e., even when the patterns a
not harmonic~the discrepancy does not exceed;10% for
DPe;Pe0). Estimations of the amplitudes based on the cr
cal Pe of the unbound system show that the theory allow
to predict the profile behavior only qualitatively. The po
agreement between numerical results and nonlinear stab
predictions in the general case is not surprising, as it ta
place even for the degenerate conditions considered in
1.

VI. CONCLUSION

We study pattern formation in a one-dimensional mo
of finite-size reactor subject to various types of bound
conditions. This system can be viewed as a particular cas
a general reaction-diffusion-convection system which adm
one or three homogeneous solutions. The linear stab

FIG. 6. The transient leading to a sustained pattern starting f
a homogeneous state. The temperature is denoted as a grey sc
the time vs space plane. The conditions are as in Fig. 1 with
5100.
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analysis for this model was performed for the case of
unbounded system, and the analytical expression for am
fication threshold was determined. This critical value det
mines the threshold of the stationary pattern excitation wh
actually could be sustained in bounded systems. A w
nonlinear analysis was performed for small deviations fr
the threshold of the general reaction-diffusion-convect
problem, and the governing amplitude equation was deriv

The results of linear and nonlinear analyses were veri
by direct numerical simulation around two singular poin
the oscillatory short-scale~Hopf! bifurcation point for a sys-
tem with periodic boundary conditions, and the amplificati
threshold point in a bounded system with Danckwer
boundary conditions. For the first case the critical parame
obtained by the linear stability results for an unbounded s
tem are in very good agreement with numerical results.
the framework of a nonlinear analysis, we determined
velocity of the emerging traveling waves and their amp
tude. The boundaries of the applicability of the nonline
analysis were obtained by a comparison of the amplitude
the velocity dependencies on the bifurcation parameter.

For the second case the numerical results revealed tha
sustained stationary patterns are strongly affected by
boundary conditions. The traveling wave patterns cor
sponding to the convective instability in unbounded syste
are effectively dumped by the boundary conditions in
bounded one. The nonuniformstationarypatterns emerging
above the amplification threshold seem to be very simila
movingpatterns discussed in Ref.@20# in the framework of a
complex Ginzburg-Landau equation with nonreflecti
boundary conditions. Analysis of the latter model, which a
counts for both convection and diffusion terms, revealed t
mostly convection determines the behavior of the syste
Unfortunately, there is no systematic theory that descri
the analytical form of boundary conditions for the governi
amplitude equation in order to reproduce the numerical
sults.

Strictly speaking, the linear stability analysis for u
bounded systems cannot be applied to bounded system;
ever, the critical value of the bifurcation parameter can
predicted for relatively small deviations of the boundary co
ditions from the steady state solution. In this region the n
linear analysis describes the amplitude envelopes with a v
high accuracy. For large deviations of the boundary con
tions the critical wave number is still predicted by line
analysis with a very high accuracy; nonlinear analytical
sults allow one to the resolve the quantitative behavior of
system.
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