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Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems
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Stationary spatially inhomogeneous patterns which appear due to the interaction of reaction and convection
in a packed-bed cross-flow reactor are observed and analyzed. A linear stability analysis was performed for the
case of unbounded system, and an analytical expression for the amplification threshold was determined. Above
this threshold stationary patterns could be sustained in bounded systems. A weakly nonlinear analysis is used
in order to derive the governing amplitude equation. The results of linear and nonlinear analyses were verified
by direct numerical simulations.

PACS numbd(s): 82.40.Ck, 47.54tr

[. INTRODUCTION packed beds with the flow of the reactants and products
through the bed of catalytic pellets. Pattern formation in
In this work we describe the emergence of stationary pateonvection-conduction-reaction systems with a simple exo-
terns due to interaction of convection, conduction diffu-  thermic and activated catalytic reaction has recently attracted
sion), and reaction in a realistic model of a catalytic mem-considerable attention. Convection will affect the emerging
brane reactor. Aside from describing the phenomena we airpatterns in oscillatory systems, as demonstrated in recent
to derive a general complex Ginzburg-Landd@lGL)-like  studies[7]. A reactor with flow reversal was extensively
model. While such models that account for both diffusionstudied and installed commerciall§]. Patterns due to front
and convection have been studied by several groups, wieedback in a loop reactor were recently demonstrated by
highlight the importance of boundary conditions for patternGilles and co-workers in Ref$9,10].
selection, and point to the problem of translating real bound- We consider a membraner cross-flow reactor with re-
ary conditions to those of the CGL model. It was demon-alistic parameterfhigh heat capacity and small axial disper-
strated in several studies that pattern selection in a boundegion (diffusion)]: physically it requires a continuous supply
region is significantly affected by the boundary conditions.of reactants along the bed, so that a homogenéspace-
Deissler[1] was probably the first to point out the important independentsolution may be attained. A similar model was
role of boundary conditions, but he was interested mainly irused in recent works by Yakhnin and co-workétd—13
the effect of boundaries as a source through which disturdevoted to differential flow induced chemical instability in a
bances are injected into the flow and propagate downstrearne-dimensional tubular cross-flow reactor. Linear stability
In subsequent work§2—-4] the effect of various types of analysis around a spatially homogeneous solution was used
boundary conditions including reflective and absorbingto obtain the dispersion relation, and some useful estimations
boundaries was investigated using the CGL equation. It wasef the possible wave numbers were obtained. The patterns
established that close to threshold the dynamics of a boundezkcited above the convective instability threshold are washed
system is reasonably well described by the amplitude equasut in bounded system, so the authors used temporal forcing
tion derived for the infinite systerb]. at the reactor inlet in order to excite nonvanishing inhomo-
Spatiotemporal patterns in reaction-diffusion systemgyeneous structures. It should be underlined that these pat-
have been studied extensively, and typically emerge due tterns are periodic in time, and characterized by a nonzero
the interaction of a short-range activator with a highly dif- amplitude growth rate.
fusing inhibitor. Oscillations in high- and low-pressure cata- In the model discussed below we consider two types of
lytic systems are accounted for by a fast activator and a slowoundary conditions—periodic, and realistic Danckwert's
but localized(nondiffusing inhibitor. Typically, the fast set type. For the former type we found well known travelling
in catalytic reactors accounts for reactant concentration andiave solutions described by a complex Ginzburg-Landau
the catalyst temperature, while the slow inhibitor is the cataequation. For the latter the homogeneous state typically does
lytic activity, as described above. The identity and the kinet-not satisfy the boundary conditions, and the emerging inho-
ics of the latter are still debated. Patterns in such systemsogeneous structure is not the result of the bifurcation but
may emerge due to long-range interaction imposed by globatan be viewed as the system response to the boundary con-
control or by gas-phase mixing and were recently studied bylitions.
our group as well as other groupsee the review by Shein- The structure of this work is as follows. The reactor
tuch and Schvartsmaf6]). When the activity is fixed the model in both dimensional and dimensionless forms is intro-
system decays into a steady state due to the large heat capalciced in Sec. Il. In Sec. Il a neutral curve for an unbounded
ity of the catalyst. The model considered here assumes system with a minimum corresponding to an oscillatory
fixed activity, and patterns emerge due to the interaction ofHopf) bifurcation is obtained by means of linear analysis.
convection and reaction. This minimum represents the convective instability thresh-
Commercial catalytic reactors are typically organized asold. Periodic boundary conditions may lead to a shift of the
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critical wave number, but the type of bifurcation is pre- IT IT 2T

served. It is shown that the phase velocity is not constant (,ocp)eﬁJr(;)cp)fu&——ke—2

along the neutral curve; moreover, it may change its sign at z

some point on the curve. This point corresponds to the am- —(—AH)(1—e)r(C,T)+S;

plification threshold, so that it appears to be very important

for further analysis of the system. In a semi-infinite region orpanckwert’s boundary conditions are typically imposed on

a finite region, traveling waves decay if the instability is tne model:

convective. Danckwert’s boundary conditions produce a cer-

tain stationary regime instead of traveling waves. Its proper- d T

ties are essentially different below and above the amplifica-2=0, €Ds—=u(C=Ciy), ke~ =(pCp)u(T—Tip);

tion threshold. Only after the amplification threshold is @)

passed does one obtain new patterns. gT  oC
The nonlinear analysis is performed in Sec. IV and the z=L, =—=

governing equation for a perturbation amplitude is derived.

For periodic boundary conditions the result is quite :~:tandar(r{/|(,iSS dis PR ; P s .
. , persion is typically negligible. A first-order acti-
Lit qud_s to the complex szburg-_L_ar_ldau eq“a“‘j@#'?)l . vated kinetics = Aexp(—E/RT)C is assumed. The appropri-
and it is not presented. In the vicinity of the amplification 5y0 1 athematical model may be written in the dimensionless

threshold, in contrast to the standard CGLE, the governin i
amplitude equation lacks the diffusional term, while the c:on-%rm of Egs.(1) and(2) (see Ref{7] for a derivation:

2 o

vective term is present, and the latter have a comfiteloc- IX X
ity) coefficient. The cases where this equation is well posed 5.t ﬁ—§=(1—X)G(y)—(X—XW)= f(x,y),
are found and discussed.

The stability analysis results are checked against direct 2

numerical simulations presenteq in Sec. V. They confir_m t.heLeﬁ_er &_y 17y =B(1-X)G(y)— a(y—Y,) =g(X,y),

excitation of traveling waves in a system with periodic ~d7 J& Pe g2

boundary conditions, and the decay of these solutions for 3

realistic boundary conditions below the amplification thresh-

old. Numerics also show that above this threshold stationary

structures emerge, these patterns remain stable even far from G(y)=Da ex;{ m)

threshold, while the profile changes significantly. Note that

the developed theory is valid if the critical wavelength is First Egs.(3) will be treated in an unbounded region. Al-

significantly smaller than the size of the system. though this solution can hardly be realized, technically it
provides some insight into the bounded system case. Later

we supply it with Danckwert’s boundary conditions
Il. REACTOR MODEL

Consider the main physical phenomena that take place in =0, X=X, a_y:pqy_ym), E=Eoy, a_yzo_
a one-dimensional membran@r cross-flow reactor in Z3 Z3
which a first-order exothermic reaction occurs. By mem- (4)

brane reactors we imply a fixed bed, in which the reactant

flow and react, while a small stream of highly concentrate Wvay, but independent variables and nondimensional param-

reactants is supplied continuous(py diffusion or flow ; ;
through the reactor wall. Dispersion of a reactant along e%e;?fégf%b:z?ﬂire_ normalized with respect to the mass trans
o

packed-bed reactor, rather than supplying it with the feed,

ere the dependent variables are normalized in a standard

may be advantageous in several classes of reacts@esthe C. —C T-T Az actu
discussion in Ref[14]). A continuous supply of a reactant X=—o . Y=v n &= L, r=— ,
may also be effectively achieved in a sequence of two con- Cin Tin L L
secutive reactions, when the first one is reacts at an almost

constant rate. The mathematical model accounts for the fast . _ E _ (—AH)Gip _ (1—e)(pCp)s
and localized concentratioB and the slow and conducting RTi,’ (pCp)iTin ' (pCp)s
temperaturel, which can also be viewed as the activator.

The mass and energy balances are conventional ones except

for the mass supply term; they account for accumulation, Pe— (pCp)iLu Da— &e_y
convection, axial dispersion, chemical reactiqc, T), heat Keac ' uac '

loss due to cooling S;=a+(T—T,)], and mass supply

through a membrane wdllSc= ac(C—C,)]. For the one- kgPL hyPL

dimensional case the appropriate system of equations has the A=, 9T (pCp)iUag

following forms:
In order to reduce the number of free parameters we used

JC aC 72C Tw=Tin, i.€.,¥in=Yw=0; note thatx,,<0 corresponds to
— +U— —€eDj—=—(1-€)r(C,T)+S¢, the caseC,,>C;,. The length of the reactaf., was chosen
gt oz 9z° to resolve the structure of emerging patterns.

oY)
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Ill. LINEAR ANALYSIS Pe

60
System(3) in an unbounded region may admit multiple

homogeneous solutiong andy, of the corresponding alge- 58
braic systemf(x,y)=g(x,y)=0. The rootsxs andy, are

X ) 56 Re 0=0
linearly dependent, and thg, values may be determined ° e

from the equation 54
H(Ys)G(Ys) = a(yYs—Yu), 6 2
50
where
48 Im o=0

H(ys)=B(1—Xy) — a(Ys—Yu)- 2

. ) ) _ 500 1000 1500 /2000 2500
The left hand side of Eq6) is a “sigmoidal curve,” and up

to three intersections with the straight lifigne right hand FIG. 1. The neutral curve determined by relatiad) calculated
side of Eq.(6)] may exist. The multiplicity of the homoge- with B=30, y=20, «=20, x,=—11, y,=0, and Le=333; the
neous solutions as well as the dynamic behavior of the revalue of Da corresponds to the upper branch of the basic solution
lated system ys=17.54. The dot on the curve corresponds to the amplification
threshold.
X ay
&—Tzf(X,Y), a—ng(X,y) (7)  where the coefficients are determined by the following for-
mulas:

was extensively investigated in Ref45,16], as it describes 2
the temporal dynamics of a continuously stirred tank reactory — 1 4 G(y,)+ ————G'(y)——, A=k——,
(CSTR. This problem can exhibit a plethora of phase plane LePe Le Le
regimes, including a simple limit cycle, a pair of stable and

unstable limit cycles around a stable state, the coexistence of _ G )H(ys) L2 1+G(ys) — Pe+ a(1+G(ys))

a limit cycle with a low-conversion stable state, and a limit "' Yo e Le Pe Le '
cycle surrounding three unstable states. We expect that the (10
spatiotemporal behavior of the distributed systénis re-
lated to the corresponding CSTR problem. Obviously, in the
limit of large Peclet numbers Pex, the steady state solu-
tions of Eq.(3), if they exist, are fully equivalent to the
temporal solution of Eq(7) (with £ instead ofr). However, It can be easily shown that the bifurcation conditionoRe
a comprehensive investigation of the behavior of systgm =0 is satisfied if

is beyond the limits of this study. We shall consider a par-

aPe | H(ys) 1+Le

H 1+a+G k3
(ys) Tk 44 (ys) i

L= — ! )
Ni=—kG'(ys) Le Le Le Pe

ticular case when systef8) admits three homogeneous so- AN, +AAN;=N7, (11
lutions; the results presented below are obtained only for the _ ) _
upper one. Other situations are considered elsewlidfe while the frequency of the emerging oscillatory pattern is

The stability of the solutionx,y.) can be determined by 9iven by
means of a linear stability analysis. Denoting deviations from
the basic solution asx(,y;), and linearizing the original

Eroblem, we arrive at the following system for the distur- ¢ |atter should be calculated at the point corresponding to
ances: the minimum of the neutral curve determined by relation
(11). This curve can be found numerically, and typically ac-

w.=Imo=—N,/A,. (12

%: - %—(1+G(ys))X1+G'(ys)My1, quires the form shown in Fig. {the chosen bifurcation pa-
ar 9 B rameter is Pe
8 The minimum of the curvel{;,P¢g) corresponds, in an
a1 L0y 1 Py unbounded system, to the excitation of moving waves. For
or ¢ € Fpea_gz bounded system with periodic boundary conditions the criti-
cal wave number value may be shifted. On the other hand,
, H(ys) a this minimum coincides with the threshold of the convective
- EG(VS)XHG (Y —g Y1~ V1 instability; hence any spatial nonuniformities are advected in

the direction determined by the sign of the phase velocity
Assuming disturbances to be harmonic in the space varitdw/dk)., and in the finite region these disturbances can
able &, i.e., (x;,y;)~e'ké 7! wherek is the disturbance survive only for periodic boundary conditions. In a finite
wave number and- is its growth rate, and using it in E¢9),  region with realistic boundary conditions these perturbations
we arrive at the dispersion relatioR(o,k)=0. This has Wwould inevitably decay.

form of a quadratic equation witbomplexcoefficients, Because our main goal is to study the influence of station-
ary nonhomogeneous boundary conditions, we will also in-

a?+ (A +iA) o+ (N, +iN;)=0, 9 vestigate the transition between nontransparency and ampli-
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fication for stationary boundary disturbandds8]. We have curve, and the bifurcation parameter deviation should be of
shown that this transition is connected with a point on thehe same order of magnitude as the spatial scaingo 8
neutral curve corresponding to the zero wave velocity. The=2.

location of this point is determined by Ed.1) supplemented Substituting the above expansions into the original set of
by a condition of zero frequench;=0 shown by the line equations, and collecting terms of the same orders wie
Imo=0. This additional condition determines a point at theproduce a set of equations. It can be easily seen that in zeroth
neutral curve which is shown in Fig. 1; its location is deter-order in e, we arrive at a steady state problem determining

mined as follows: stationary homogeneous solutifxy,y.}. In first order(with
1 Pe =0) we reproduce the homogeneous linear prob(8m
ko=[G(ys)G'(ys)H(ys) = (1+G(ys)T™, in the form
(13
K2 Luy=(— 0l dto+ D(P&) 3l 92+ al 9é+ J)uy =0.
Pg= 17

1+a+G(ys) —G'(ys)H(ys)
HereD andV are diffusional and convectional matrices:
At this point the imaginary part of some complex réaif
the dispersion relatiorD(o,k)=0 tends to zero atr—0.
The value Pe Pg, corresponds to the transition from non-
transparency to amplification regintsee Ref[18]).

-1 0

Vel —Let)

_(o 0
D(Pg= 0 (LePet!

The matrixJ can be found as a Jacobian matFix of the

IV. NONLINEAR ANALYSIS reaction part of the problerfr(u)={f(u),g(u)/Le} calcu-

) ) ) ) lated at the stationary poif,:
In order to investigate the spatial decay the nontrans-

parency regionand the nonlinear spatial growtm the am- ( —-1-G(y,) G'(ys)H(ys)/B )
plification region of a stationary boundary disturbance near = , .
the point Pe=Pg), we will develop an appropriate amplitude ~BG(y)/Le (G'(y)H(y)—a)Le
equation which is valid near that point and describes just the The pontrivial solution of the linear problei?) can be
amplified and weakly decaying disturbances, i.e., disturyyitten in the case Inr=0 as
bances withk nearky.

u;=a(é;,ty,t,, ... )Uekobo+c.c.,

A. Derivation of the amplitude equation ) ) ) )
whereU is the eigenvector corresponding to zero eigenvalue,

The nonlinear analysis is made by means of the multiscalgg 5 is a complex amplitude of the perturbation, which

expansion approacfl9]. In this section we sketch major remains undetermined at this stage. The eigenvector is found
steps of derivation of amplitude equation for the unboundeg,q

system under investigation.

We introduce a hierarchy of time scales, U={G'(ys)H(Ys)/B,1+ G(ys) +iko}.
alot=ol dty+ el gty + €2al dty+ - - -, (14 In the next order we arrive at the following inhomogeneous
roblem:

and expand in Taylor series the phase variables and the bﬁ)—
furcation parameter, Luy=duy /ot — LF, U U . (18)

U=Ug+eUs+ €Uyt ---, Pe=Pg+ePg+ePe+- '('1-5) HereF,, is a tensor of the third rank, with components

9%F;
whereu={x,y}. We also determine two spatial scales: (Fuu)ijkzm
j
aloE= 0l déy+ €Pol 9éq; (16)

and £ is defined in Eq.17). The solvability condition for
Eq. (18) is determined by the orthogonality of a secular part
of the inhomogeneity to an eigenvectol’ of the adjoint
linear problem. This vector is given by

here the value of3 should be chosen to balance terms of
different orders ofe properly.

In the case of the Hopf bifurcation with the critical point
located at the minimum of the neutral curve, the spatial scal- UT=X"Y—B(1+G(ys) —iko) (G’ (yoH(ysLe), 1},
ing B is half that of the bifurcation parameter deviation
(which usually is set equal to 2, i.e., £€0). The derivation which satisfies the additional orthogonality condition
of the amplitude equation in this case is quite standard, rerT,U)zl [(.,.) denotes a scalar product defined as Carte-
sulting in the CGLE. The solution of this equation deter-sjan scalar produttHerex =[(1+ G(ys))(Le—1)+iko(Le
mines an amplitude of the traveling waves excited above the-1)]/Le is the nonzero eigenvalue of the linear problem. It
bifurcation threshold. Numerical simulations shows that thiscan be easily checked that the solvability condition is equiva-
equation describes the emerging nonstationary patterns quifent to
well (see Sec. Y In the case with In=0 the point
(ko,Pg) is usually located at the linear section of the neutral daldt,=0.
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The last equation again says nothing about the amplitude The parameter Da can be tuned in order to shift the criti-
behavior in time and space, so we need to proceed to the nesal point to the minimum of the neutral curve shown in Fig.
order, and to determine part of, orthogonal tou,. It has 1. The derivation of the amplitude equation in that case is not
two contributions changed, but the imaginary part of corresponding to the
rate of the perturbation growth Revanishes for obvious
U= u(22)+ u(zo), reasons.

one is proportional to the double spatial frequency mode

2) B. Analysis of the amplitude equation
u$?), and the second corresponds to the constant méde

These contributions are given by The complex amplitude equation derived in Sec. IVA is
valid in an unbounded system, or in a finite length region
u®=—F, 'F,,UU*al?, which is much larger than the length of the critical distur-

(19) bance. As we show below it can qualitatively describe the
1 behavior of the perturbation amplitude even in a general
u(22)= - E(Fu—4k(2)D(Peo)+2ik0V)‘1FuuUUa2, bounded system with imperfect boundary conditions.

It should be emphasized that the E81) is actually ill
posed; i.e., infinitesimally small perturbations of a solution
will grow very fast, so that the original approximation is no
longer justified. This feature of E¢R1) is caused by the fact
that in the framework of this equation the linear growth rate

where* denotes complex conjugation. In the third ordegin
we obtain the following equation

2
cuszﬁ_ Dr(pe)ﬂ Pe— ( ZDL—V)& Reo (k) is approximated by the linear function kinear the
dty 9ES d&o 231 point k=k,. Thus it strongly overestimates the growth rate
. of the disturbances witk<k,, if |k—kg| is not small, and
leads to a spurious instability of any solutions in an infinite
——FuuUiuug — Fyuuqus. 20 ; . o
g uwrITITL TuurLT2 20 region. Nevertheless, Eq21) can be useful in describing

solutions which do not contain disturbances with latge
After substitution of Egs(19), and projecting on the leading —k|, e.g., (i) in cases where the spatial modulation of the
harmonics, we finally arrive at the nontrivial amplitude equa-amplitude is neglected, and thus the wave number pre-
tion scribed; or(ii) for the calculation of the spatially modulated

steady stateegime where the short-wave modulations which

Ja Jda i i
2 _clalfatciaty—. 21) grow fast are excluded from consideration. _
oty I3 It is reasonable to use the polar representation of the com-
plex amplitudea=re'?, and we arrive at a pair of real equa-
Here the most important cubic terthanday coefficient tions:
c3=1/2(U", — F, ,UUU* + F U* O dty=—Cgrr3+Cq, r + 0,91 9E1—vir Il IE,,

2 : -1 (24)
X (Fy= 4koD(P&y) + 2ikoV) ™ "FyyUU Il ty=—Cyit 2+ Cy+ (0, 1) I 9EL +v, bl IE,.

+2F  UF, 'F, UU*). 22 . . .
wUFy TR, UU™) @2 Here the subscripts andi of the coefficients correspond to

The positive real part of this coefficient corresponds to stabléh€ réal and imaginary parts of the corresponding quantities.

stationary homogeneous amplitude of the Turing-like pertur-

bation. The explicit expression fag is cumbersome, and is

omitted here. The linear term coefficient is proportional to In this regime @r/dé,=d¢/3&,=0), the equations for

the second-order deviation of the bifurcation parameter: the real amplituder and the phasep are separated. The
former equation has a nontrivial stable solution

1. Spatially homogeneous amplitude regime

c,=—k3(U",D'(Pg)U)Ps,.

Clr
Finally, the convective term coefficient is cast in the form Ms=\ o (25

3r’
— (Ut (o
v=(U',(2ikD+V)V). which is proportional to square root of the parameter’'s de-

i viation. The solution of the phase equation
Substitution of model values fdp, V, U, andU" produces P d

the following expressions for the above coefficients:

C3,C1j—C3iC
¢S: 3r 1|C 3i lrtZZQtz (26)
kiLe 3
Ci1= (1+G(yg) +ikg)Pe,
! P(%)\ Ys TS leads to a frequency shif2 proportional to the parametric
(23 deviation. This implies that the perturbation has the form of
2le ké a traveling wave with a velocity

:_kﬁ_)\ £+lko[a(1+G(ys))—G (ys)H(ys)1|. V= k. o7
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FIG. 2. Snapshots of the temperature profiles
05 1 05 1 for a system with periodic boundary conditions
(a) {c) for parameters as in Fig. 1 aryd=17.677, with
varying Pe>Pg=98.2:(a) 102, (b) 110, (c) 200,
30 30 and (d) 1000. The horizontal lines show the

steady state level.
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Note that in the case of the infinite region we consider here Note that the behavior of solutiof30) is essentially
the nonlinear solution is nonstationa(ly‘lopf bifurcatior), Changed when we cross the amp”ﬁcation thresﬁqldzo:

though the linear theory predicts a zero frequency at th(?‘legative values of;, correspond to the nontransparency re-

pointk=ko. gion, and the positive values to the amplification region. It
should be emphasized that the transition described alsove
not the Turing bifurcation. As it was shown in Sec. IVB 1,
Though the amplitude equatiof24) is derived for the in the absence of a stationary boundary disturbance the struc-
case of an infinite system or a system with periodic boundaryure excited withk=k, has a zero frequency only in the limit
conditions, we are going to check its applicability for the pe— Pg), but a nonzero frequency as PPg, so that there
problem in a finite region with realistic boundary condition is a specific case of Hopf bifurcation. Note also that this
(4). The achievement of this goal is simplified by the obser-transition does not correspond to the absolute instability
vation that the simulated patterns are statioriage Sec. Y. threshold; the latter leads to traveling wave regirtsese, for
Let us consider the stationary problem in the semi-infiniteexample, Ref[20]).
regions @r/dt,=0,0¢/dt,=0):

2. Spatially modulated stationary regime

~ ~ ~ ~ V. NUMERICAL SIMULATIONS
dr/dé& =r(—cgr?+cy), de/dé;=(—cyr?+cy)

(28 Numerical simulations were conducted around the point
_ _ of the amplification threshold (Beky) for two different
(c3=—c3lv, c;=—cy/v), subjected to nonhomogeneous cases. In the first one we choose a set of parameters for
inlet conditions which this point coincides with the point of convective in-
stability (Pe,k.), and thus the results of the stability analy-
r(0)=ro, ¢(0)=dyo. (29 sis for an unbounded system may by directly applied for the
case of a bounded system with periodic boundary conditions.
In the following stage we consider the general case when the
~ points of the convective and amplification thresholds are
\/E_lrroexp(clrgl) separated, and discuss the emerging patterns and the validity

The solutions of this system are given by

r(é)= o — ' of the analytical predictions derived for an unbounded sys-
Vey, ~Carr3(L - exp( 28y, £1))
_ - (30) 0.12 2-10°"
$(£1)= bo+ Snért —on o
V= ¢@oT g™ =~ e—7—= ~ :
"t 20 Cu—Car3(1—exp(2Cy,£y)) 0.08
ay vi1-107¢

Note that,Elr determines the spatial increment of the ampli- ;.

tude, whilec,; gives the wave-number shift. Unfortunately,
there is no recipe of converting the original inlet boundary 0
condition (4) into the inlet values g, ¢ in Eq. (29) for the (@) 0 1 2 3 (b) sPe

amplitude equatior{28). We can only fit these values into are

solution (30) for better agreement with the numerical simu-  F|G. 3. Comparison of the analytical and numerical dependen-
lation results. In Sec. V we show that soluti¢B0) of the  cies of the perturbation concentration amplitudg (a) and the
model system of equatiori28) and(29) describes the results phase wave velocity (b) on the deviation of the bifurcation pa-
of numerical simulations rather well. rameterAPe. Parameters as in Fig. 1, ang=17.677.




2442 OLGA A. NEKHAMKINA et al. PRE 61

bx to note that the ratio of the amplitudag/a, , as well as the
velocity of the waves/, are in a good agreement with ana-
lytical predictions in a relatively large regiomM\Pe<10),
i.e., the formulas for the eigenvectors may be applied in a
wider range of deviation of the bifurcation parameker.

To elucidate the role of the boundary conditions on the
amplitude of the patterns in a bounded systems, we simpli-
fied the boundary conditions, using fixed values of the vari-

FIG. 4. Comparison of the analytical and numerical depen-gples at the boundarieﬁ§=0=us+ du instead of Eq(4). For
dences of the. .perturbatior.] concgntratiqn .amplitw;e for the  geviationssu~U, dependence@0) are in a good agreement
boundary condition at the inlet with deviatiofu~U; Pe=100.  ith numerical results. In the case of arbitrary deviations the
Parameters as in Fig. 1, agg=17.677. phase shiftAk is predicted quite well, but the amplitude

behavior can be described only qualitativélig. 4).
tem to a bounded system subject to realistic boundary con- Case 2.In the second stage we carried out numerical
ditions. simulations for Eqs(3) and(4), for the general case where,

Case 1.The point of amplification threshold is located at in the corresponding unbounded system, the points of ampli-
the minimum of the neutral curvdor the parameters used in fication threshold and convective instability do not coincide.
Fig. 1 withys=17.677; the corresponding critical values arelt should be emphasized that the stability analysis presented
Pe=Pg=298.2 andk.=k,=48.47). For a system with pe- above cannot be applied directly for a bounded system
riodic boundary conditions the length of the reactor was choimperfect bifurcation is expected which is not analyzed in
sen to be equal th =10(27/kp). Note that the fixed value the present investigatipnSo we study pattern formation by
of L automatically ensures the constant valu&gfwhile in ~ numerical experiments, and test the predictions of the ana-
the unbounded system this parameter may be affected by thgtical results in the general case.
bifurcation parameter. As expected, only the homogeneous Typical solutions in a bounded domadiRig. 5 show that
solution emerges for RePe.=Pg,. For Pe>Pe, the system for Pe<Pg, the homogeneous solutiorgy,y,) is established
exhibits traveling wave solutions with constant amplitudesin most of the domain with some adjustment to the boundary
(Fig. 2). With increasing Pe the form of the profiles changesconditions near the inlet section. Note that the critical param-
but the wave number is preserved. eters cannot be determined exactly, but the numerically de-

The comparison of numerical and analytical results demtermined threshold values of Pe for the convective instability
onstrates that the value of Pis predicted with a very high and amplification threshold are very closed to the analytical
accuracy by the linear stability analysis. The concentratiorvalues.
amplitudea, and the velocity of the wavey, plotted in Fig. For Pe>Pe. the system exhibits transients of traveling
3 as functions of deviations in Pe, can be predicted quite wellvaves: once excited, they move until they are consequently
by nonlinear analysifEgs.(25) and(27)] for relatively small ~ arrested near the boundaries, and finally stationary patterns
APe<5 (the same is valid for the temperature amplitage. ~ are formed(the dynamic behavior for PePeg, is illustrated
For largeAPe the linearity of the amplitude curves wifite by Fig. 6, but a similar transition takes place for>Fee,;
breaks, and the numerical values exceed the theoretical reee the discussion belpwThe form of the sustained station-
sults. The Fourier analysis of the profiles reveals that increasary patterns depends on Pe. In the subcritical region (Pe
ing Pe leads to an excitation of higher harmonics wkth <Pg), the amplitude of the wavy patterns decays along the
=2kq, k=3ky, etc. The impact of these harmonics in- reactor, and the profileg(z) andx(z) tend to the stationary
creases with the Pe number, and leads to a perturbation of tiselutionsys andxs, similar to the case when RePe, .

original profile with a single wave numbdlt is interesting For the supercritical conditions (PdPg,)) stationary pat-
0.8\ 25
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analysis for this model was performed for the case of an
unbounded system, and the analytical expression for ampli-
fication threshold was determined. This critical value deter-
mines the threshold of the stationary pattern excitation which
actually could be sustained in bounded systems. A weak
nonlinear analysis was performed for small deviations from
the threshold of the general reaction-diffusion-convection
problem, and the governing amplitude equation was derived.
The results of linear and nonlinear analyses were verified
by direct numerical simulation around two singular points:
the oscillatory short-scal@Hopf) bifurcation point for a sys-
tem with periodic boundary conditions, and the amplification
threshold point in a bounded system with Danckwert’s
boundary conditions. For the first case the critical parameters
obtained by the linear stability results for an unbounded sys-

FIG. 6. The transient leading to a sustained pattern starting from . ; .
X tem are in very good agreement with numerical results. In

a homogeneous state. The temperature is denoted as a grey scal Hn f K of I Vi det ined th
the time vs space plane. The conditions are as in Fig. 1 with P e r_amewor ora npn Inear gna ysis, we de em."ne -e
~100. velocity of the emerging traveling waves and their ampli-

tude. The boundaries of the applicability of the nonlinear

terns are established with an amplitude that varies in spa alysis were obtained _by acomparison O.f the amplitude and
but tends to some saturated value, as follows from the andh® velocity dependencies on the _blfurcatlon parameter.
lytical investigation. To the best of our knowledge, such pat- Fo_r the secqnd case the numerical results revealed that the
terns in reaction-convection-diffusion systems were not de-SUSta'ned stationary patterns are strongly affected by the
tected previously. In Ref{20] moving patterns of similar bound_ary conditions. T_he .travel!rjg Wwave patterns corre-
profiles were detected above the absolute instability thresiEPoNding to the convective instability in unbound.e.d systems
old in the framework of the complex Ginzburg-Landau equa—are effectively dumped by the _boundary condltlons_ In-a
tion. bounded one. The nonumforBtatlonarypatterns emerging
For relatively small deviations\Pe=Pe-Pe, the pat- aboye the ampllflpauon thrgshold seem to be very similar to
terns have a harmonic forffrig. 5(c)]. With increasingA Pe, movingpatterns discussed in R¢20] In the f_ramework of a
the amplitude of the state variables increases. This process‘f?mplex Glnz'b'urg-Landau . equation with nonref!ectlve
accomplished by a transformation of the form of the pattern‘?oundary conditions. Ar_1aly5|s of_the _Iatter model, which ac-
(similar to case 1, and a decrease of the wave numfze counts for both _convectlon_and diffusion te_rms, revealed that
Figs. 5d) and 5e)]. Numerical simulations reveal that the mostly convection determines the behavior of the system.

form of the patterns becomes insensitive to Pe number fopnfortuna_tely, there is no systemati_c_ theory that descr?bes
large Pe & 10°) the analytical form of boundary conditions for the governing

r'ﬁ1mpli'[ude equation in order to reproduce the numerical re-
sults.

Strictly speaking, the linear stability analysis for un-
bounded systems cannot be applied to bounded system; how-
ever, the critical value of the bifurcation parameter can be
redicted for relatively small deviations of the boundary con-

The computed wave number is in a very good agreeme
with the theoretical valu&, even for large deviations of Pe
from the critical value Pg i.e., even when the patterns are
not harmonic(the discrepancy does not exceed 0% for
APe~Pg). Estimations of the amplitudes based on the criti-

cal Pe of the unbound system show that the theory allows ugitions from the steady state solution. In this region the non-

to predict the profile beha\{lor only qualltatlvely. The OO | near analysis describes the amplitude envelopes with a very
agreement between numerical results and nonlinear stab|I|t|¥

- . . . . igh accuracy. For large deviations of the boundary condi-
predictions in the general case is not surprising, as it takets g : X X )
- A . ions the critical wave number is still predicted by linear
place even for the degenerate conditions considered in case L i ) . .
analysis with a very high accuracy; nonlinear analytical re-
1. s .
sults allow one to the resolve the quantitative behavior of the
system.
VI. CONCLUSION
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